01/06/2020-Matemàticas 8º-Semana 15: Estadìstica Descriptiva

BIENVENIDOS


DEFINICIÓN Y CLASIFICACIÓN DE VARIABLES

La estadística descriptiva es la rama de las Matemáticas que recolecta, presenta y caracteriza un conjunto de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela, temperatura en los meses de verano, etc.) con el fin de describir apropiadamente las diversas características de ese conjunto. Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística. Las variables pueden ser de dos tipos:

• Variables cualitativas o categóricas: no se pueden medir numéricamente (por ejemplo: nacionalidad, color de la piel, sexo).

• Variables cuantitativas: tienen valor numérico (edad, precio de un producto, ingresos anuales). Las variables también se pueden clasificar en:

• Variables unidimensionales: sólo recogen información sobre una característica (por ejemplo: edad de los alumnos de una clase).

• Variables bidimensionales: recogen información sobre dos características de la población (por ejemplo: edad y altura de los alumnos de una clase).

• Variables pluridimensionales: recogen información sobre tres o más características (por ejemplo: edad, altura y peso de los alumnos de una clase).


Por su parte, las variables cuantitativas se pueden clasificar en discretas y continuas:

• Discretas: sólo pueden tomar valores enteros (1, 2, 8, -4, etc.). Por ejemplo: número de hermanos (puede ser 1, 2, 3...., etc., pero, por ejemplo, nunca podrá ser 3.45).

• Continuas: pueden tomar cualquier valor real dentro de un intervalo. Por ejemplo, la velocidad de un vehículo puede ser 90.4 km/h, 94.57 km/h...etc.

Cuando se estudia el comportamiento de una variable hay que distinguir los siguientes conceptos:

• Individuo: cualquier elemento que porte información sobre el fenómeno que se estudia. Así, si estudiamos la altura de los niños de una clase, cada alumno es un individuo; si se estudia el precio de la vivienda, cada vivienda es un individuo.

• Población: conjunto de todos los individuos (personas, objetos, animales, etc.) que porten información sobre el fenómeno que se estudia. Por ejemplo, si se estudia el precio de la vivienda en una ciudad, la población será el total de las viviendas de dicha ciudad.

• Muestra: subconjunto que seleccionado de una población. Por ejemplo, si se estudia el precio de la vivienda de una ciudad, lo normal será no recoger información sobre todas las viviendas de la ciudad Facultad de Contaduría y Administración. UNAM Estadística descriptiva Autor: Dr. José Manuel Becerra Espinosa 2 (sería una labor muy compleja), sino que se suele seleccionar un subgrupo (muestra) que se entienda que es suficientemente representativo. Las variables aleatorias son variables que son seleccionadas al azar.


Visita los siguientes enlaces:

https://www.youtube.com/watch?v=buKDQZG5phM

https://www.youtube.com/watch?v=W1_eCwuYkAI


Conceptos básicos. Individuo, población, muestra.


Ejemplo 1. Para estudiar la evolución del cáncer de mama en la población femenina de un país, se puede considerar que individuo es cada una de las mujeres residentes en el mismo, población es el conjunto de todas ellas y una muestra se obtiene al observar el 1% del censo.

Con mucha frecuencia se consideran como población y muestra, no los conjuntos de individuos, sino las medidas de la característica asociadas a esos individuos.


Ejemplo 2. En un banco de sangre se experimenta un nuevo sistema para aumentar el período de conservación de la misma. En este caso cada bolsa de sangre es un individuo; la población es el conjunto de todas las bolsas del banco y una muestra se obtiene tomando un cierto número de bolsas para su análisis.

Obsérvese que el concepto de individuo no va asociado necesariamente con el de persona, sino que puede ser algo de naturaleza más abstracta.


Clasificación de los datos. Cualitativos y cuantitativos.


Ejemplo 3. Se observan las causas de muerte de 16 individuos de una cierta población, agrupándolas en las cuatro siguientes: enfermedades cardiovasculares (EC), cáncer (C), accidentes (A) y otras causas (O), habiéndose obtenido los siguientes datos:

EC, EC, A, C, O, A, EC, A, O, C, EC, C, O, C y EC.

Como los resultados no son medibles numéricamente, los datos son cualitativos.


Ejemplo 4. Las notas obtenidas en Matemáticas en una clase de 2º BACH han sido: 2, 7, 4, 6, 5, 0, 3, 9, 8, 4, 3, 6, 5 y 8.5.

Se trata de datos cuantitativos.

*A su vez los datos cuantitativos se denominan continuos si los resultados pueden tomar cualquier valor real dentro de un cierto intervalo, o discretos, si sólo pueden tomar ciertos valores particulares.


Ejemplo 5. Del estudio de la estatura de un cierto núcleo de población se han obtenido los siguientes datos:

1.62, 1.78, 1.75, 1.58, 1.83, 1.68 y 1.81metros.

Son datos continuos, pues los individuos de una población pueden tener como estatura cualquier número real en un cierto intervalo.




ACTIVIDAD

Indica cuáles variables son cualitativas y cuáles cuantitativas

1 Comida Favorita.

2 Profesión que te gusta.

3 Número de goles marcados por tu equipo favorito en la última temporada.

4 Número de alumnos de tu Instituto.

5 El color de los ojos de tus compañeros de clase.

6 Coeficiente intelectual de tus compañeros de clase.


7. Calcular la media, la mediana y la moda de la siguiente serie de números:

5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, 4.


29 vistas0 comentarios